Tetrahedron Letters 51 (2010) 6025-6027

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Rumphellaone A, a novel caryophyllane-related derivative from the gorgonian coral *Rumphella antipathies*

Hsu-Ming Chung^{a,b}, Yung-Husan Chen^b, Mei-Ru Lin^b, Jui-Hsin Su^{b,c}, Wei-Hsien Wang^{a,b,d,*}, Ping-Jyun Sung^{a,b,c,d,e,*}

^a Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan

^b National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan

^c Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan

^d Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan

^e Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan

ARTICLE INFO

Article history: Received 19 August 2010 Revised 8 September 2010 Accepted 10 September 2010 Available online 16 September 2010

Keywords: Rumphella antipathies Rumphellaone Caryophyllane

ABSTRACT

A novel 4,5-*seco*-caryophyllane sesquiterpenoid derivative, rumphellaone A (1), which was found to possess an unprecedented γ -lactone moiety, was isolated from the gorgonian coral *Rumphella antipathies*. The structure of 1 was elucidated by spectroscopic method. A plausible biosynthetic pathway of compound 1 was proposed.

© 2010 Elsevier Ltd. All rights reserved.

Previous chemical investigations on gorgonian coral *Rumphella antipathies* have yielded a series of interesting caryophyllane- and clovane-related sesquiterpenoid derivatives, including kobusone,¹ isokobusone,² rumphellatins A-D,^{3–5} rumphellolides A-I,^{6–9} and rumphellclovane A^{10} and the compounds of these types are rarely found in marine organisms. In our continuing studies on the chemical constituents of *R. antipathies*, a novel 4,5-*seco*-caryophyllane sesquiterpenoid derivative, rumphellaone A(1), was isolated. In this Letter, we describe the isolation, structure characterization, plausible biosynthetic pathway, and bioactivity of compound **1**, which was found to feature with a new carbon skeleton.

Sliced bodies of *R. antipathies* (wet weight 402 g, dry weight 144 g) were extracted with a mixture of MeOH and DCM (1:1). The extract was partitioned between EtOAc and H₂O. The EtOAc layer was separated on silica gel and eluted using *n*-hexane/EtOAc (stepwise, 25:1–pureEtOAc) to yield 29 fractions. Fraction 19

^{*} Corresponding authors. Tel.: +886 8 8825037; fax: +886 8 8825087 (P.-J.S.). E-mail addresses: whw@mail.nsysu.edu.tw (W.-H. Wang), pjsung@nmmba.

was purified by normal-phase HPLC, using the mixtures of DCM and EtOAc as a mobile phase to afford compound **1** (0.9 mg, 10:1).

Rumphellaone A (1), $[\alpha]_{D}^{25}$ +257 (*c* 0.014, CHCl₃), was isolated as a colorless oil that gave a pseudomolecular ion (M+Na)⁺ at *m/z* 275.1622 in the HRESIMS, indicating the molecular formula C₁₅H₂₄O₃ (calcd for C₁₅H₂₄O₃ + Na, 275.1623) and implying four degrees of unsaturation. IR absorptions were observed at 1714 and 1769 cm⁻¹, suggesting the presence of ketone and γ -lactone groups in **1**. The ¹³C NMR and DEPT spectra of **1** (Table 1) showed that this compound has 15 carbons, including four methyls, five methylenes, two methines, and four quaternary carbons (including an oxygenated quaternary carbon, an ester carbonyl, and a ketone carbonyl). From the ¹³C NMR data, two degrees of unsaturation were accounted for and **1** must be a bicyclic compound.

From the ¹H–¹H COSY experiment of **1** (Table 1), it was possible to establish the spin systems that map out the proton sequences from H-1/H₂-2/H₂-3; H₂-6/H₂-7; H-9/H₂-10 and H-1/H-9, which were assembled with the assistance of an HMBC experiment (Table 1). The HMBC correlations between protons and quaternary carbons of **1**, such as H₂-3, H₃-12/C-4; H₂-6, H₂-7/C-5; H-1, H₂-6, H-7 β , H-9, H₂-10, H₃-13/C-8; H-1, H₂-10, H₃-14, H₃-15/C-11 permitted elucidation of the main carbon skeleton. The tertiary methyls at C-4 and C-8 were confirmed by the HMBC correlations between H₃-12/C-3, -4 and H₃-13/C-7, -8, -9, respectively. Moreover, two tertiary methyls at C-11 were elucidated by the HMBC correlations between H₃-14/C-1, -10, -11, -15 and H₃-15/C-1, -10, -11, -14. The linkage between the fragments cyclobutane and γ -lactone was established by the HMBC correlations between H-1, H-9, H₂-10/

gov.tw (P.-J. Sung).

^{0040-4039/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.09.032

Position	$\delta_{H}{}^{a}$	$\delta_{C}{}^{b}$	COSY	HMBC (H \rightarrow C)
1	1.91 ddd (10.0, 9.2, 5.6) ^c	44.5 (d) ^d	H ₂ -2, H-9	C-3, -8, -9, -11, -14, -15
2	1.67 m (2H)	25.1 (t)	H-1, H ₂ -3	C-1, -9
3	2.37 t (8.0) (2H)	42.0 (t)	H ₂ -2	C-1, -2, -4
4		208.6 (s)		
5		177.0 (s)		
6α	2.63 ddd (18.0, 9.6, 8.8)	29.2 (t)	H-6β, H ₂ -7	C-5, -7, -8
β	2.54 ddd (18.0, 10.0, 4.8)		H-6α, H ₂ -7	C-5, -8
7α	1.84 m	30.6 (t)	H ₂ -6, H-7β	C-5, -6, -13
β	2.01 m		H ₂ -6, H-7α	C-5, -8, -9, -13
8		87.2 (s)		
9	2.06 ddd (10.4, 10.0, 10.0)	44.3 (d)	H-1, H ₂ -10	C-1, -2, -8, -10, -11, -13
10α	1.57 dd (10.0, 10.0)	33.6 (t)	Η-9, Η-10β	C-1, -8, -9, -11, -14, -15
β	1.42 dd (10.4, 10.0)		H-9, H-10α	C-1, -8, -9, -11, -14, -15
11		33.0 (s)		
12	2.13 s	29.9 (q)		C-3, -4
13	1.31 s	24.9 (q)		C-7, -8, -9
14	1.03 s	22.5 (q)		C-1, -10, -11, -15
15	1.07 s	30.9 (q)		C-1, -10, -11, -14

Table 1	
¹ H and ¹³ C NMR data,	¹ H- ¹ H COSY, and HMBC correlations for 1

 $^{\rm a}$ Spectra measured at 400 MHz in CDCl3 at 25 °C.

^b Spectra measured at 100 MHz in CDCl₃ at 25 °C.

^c *J* values (in hertz) in parentheses.

^d Attached protons were deduced by DEPT and HMQC experiments.

 \frown :NOESY correlatios and distance (Å)

Figure 1. Selective NOESY correlations of 1.

C-8 and H-1, H-7 β , H₃-13/C-9. Based on the consideration of molecular formula, an oxygen atom had to be placed between C-5 and C-8 to form a γ -lactone moiety.

The relative configuration of **1** was established by an analysis of interactions that were found in the NOESY experiment and by vicinal ${}^{1}H-{}^{1}H$ coupling constant analysis. Due to the α -orientation of H-9, a large coupling constant was found between H-9 and H-1 (J = 10.0 Hz), indicating that H-1 has a β -orientation. H-1 showed a correlation with the tertiary methyl Me-15 suggesting that H-1 and H₃-15 are located on the same face. One of the methylene protons at C-10 ($\delta_{\rm H}$ 1.57) exhibited a correlation with H-9 and was assigned as H-10 α , while the other was denoted as H-10 β ($\delta_{\rm H}$ 1.42). Moreover, Me-13 showed interactions with H-9, one proton of C-7 methylene ($\delta_{\rm H}$ 1.84, H-7 α), and C-2 methylene protons ($\delta_{\rm H}$ 1.67). By molecular modeling analysis and minimum energy calculation for compound 1, all the key correlations and calculated distances between the key protons fit the configuration of **1** as that we presented in Figure 1, indicating that Me-13 was α -oriented at C-8 and the chiral center C-8 existed in S^{\uparrow} configuration. Based on the above findings, the structure of **1** was elucidated and the chiral centers for **1** were assigned as $1R^*$, $8S^*$, and $9S^*$.

Scheme 1. Possible biogenetic pathway for compound 1.

We also propose a biogenetic pathway to account for the plausible formation of **1** (Scheme 1). Caryophyllene was lactonized to **1** by epoxidation, reduction, oxidation, Baeyer–Villiger oxidation, and esterification reactions. To the best of our knowledge, caryophyllane-type derivatives like **1** containing a γ -lactone moiety have not been found previously. Rumphelloane A (**1**) is also the first 4,5-*seco*-caryophyllane analog.

Compound **1** was found to show moderate cytotoxicity toward CCRF-CEM (human T-cell acute lymphoblastic leukemia) tumor cells (IC_{50} = 12.6 µg/mL).

Acknowledgments

This research was supported by grants from the National Museum of Marine Biology and Aquarium (Grant Nos. 99200321 and 99200322); National Dong Hwa University; Asia-Pacific Ocean Research Center, National Sun Yat-sen University (Grant No. 97C031702); and the National Science and Technology Program for Biotechnology and Pharmaceuticals, National Science Council (Grant Nos. NSC 98-2323-B-291-001, 99-2323-B-291-001, and 98-2320-B-291-001-MY3), Taiwan, awarded to P.-J.S.

References and notes

- Chuang, L.-F.; Fan, T.-Y.; Li, J.-J.; Sung, P.-J. Biochem. Syst. Ecol. 2007, 35, 470– 471.
- Chuang, L.-F.; Fan, T.-Y.; Li, J.-J.; Kuo, J.; Fang, L.-S.; Wang, W.-H.; Sung, P.-J. Platax 2007, 4, 61–67.
- Sung, P.-J.; Chuang, L.-F.; Kuo, J.; Fan, T.-Y.; Hu, W.-P. Tetrahedron Lett. 2007, 48, 3987–3989.
- Sung, P.-J.; Chuang, L.-F.; Hu, W.-P. Bull. Chem. Soc. Jpn. 2007, 80, 2395–2399.
 Sung, P.-J.; Su, Y.-D.; Hwang, T.-L.; Chuang, L.-F.; Chen, J.-J.; Li, J.-J.; Fang, L.-S.;
- Wang, W.-H. Chem. Lett. 2008, 37, 1244–1245.
 Sung, P.-J.; Chuang, L.-F.; Kuo, J.; Chen, J.-J.; Fan, T.-Y.; Li, J.-J.; Fang, L.-S.; Wang, W.-H. Chem. Pharm. Bull. 2007, 55, 1296–1301.
- Sung, P.-J.; Chuang, L.-F.; Fan, T.-Y.; Chou, H.-N.; Kuo, J.; Fang, L.-S.; Wang, W.-H. Chem. Lett. 2007, 36, 1322–1323.
- Hwang, T.-L.; Su, Y.-D.; Hu, W.-P.; Chuang, L.-F.; Sung, P.-J. Heterocycles 2009, 78, 1563–1567.
- Sung, P.-J.; Su, Y.-D.; Hwang, T.-L.; Chuang, L.-F.; Chung, H.-M.; Chen, J.-J.; Li, J.-J.; Fang, L.-S.; Wang, W.-H. Chem. Lett. 2009, 38, 282–283.
- Chung, H.-M.; Chen, Y.-H.; Hwang, T.-L.; Chuang, L.-F.; Wang, W.-H.; Sung, P.-J. Tetrahedron Lett. 2010, 51, 2734–2736.